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Plane isentropic waves (simple waves) are studied in the prestressed medium. 

Propagation of simple waves through a stress-free medium was studied by Bland in /l/. 

Below the variation in the parameters of simple waves in a prestressed medium is 
determined together with the characteristic velocities, and their dependence on the 

current state of the medium and on the prior deformation. It is shown that all 

three waves (one quasilongitudinal and two quasi-transverse) can break, and condi- 
tions under which this can happen are given. 

1. Formulation of the problem. A nonlinearly elastic isotropic medium is described 
by the function @ = p,U(eij,S)where U is the internal energy of the unit mass, pi is density 
in the stress-free state, 

eij=$(+.+~Z$ 

are the deformation tensor components, wi are the displacement vector components and S is 

entropy. The propagation of simple plane waves is considered in ji the Lagranqian coordinate 

system, which becomes rectangular and Caxtesian in the stress-free state medium. The equa- 

tions of motion of elastic medium in Lagrangian variables are /l/ 

&I, a a0 

pa a/l = dF, d jawi/atj) ’ 
isI,?, (1.1) 

and repeated indices denote summation. 
We seek solutions of the system (1.1) of the form U?i = wiD +wi* (@(&. t)). S 1 corn% and U 

is a function of its arguments. In such a wave, out of all &~,ld~~ characterizing the deform- 
ation, only aw,!dE, will vary, the rest dkJd&,a= I,2 remaining constant. The latter are 
determined by the initial deformation which will be assumed homogeneous. For the system (1.1) 
to have such solutions, it is necessary for the system of algebraic equations for du;ldfl (where 
iLi _ aw,/&) 

(1.2! 

to have nontrivial solutions. Clearly, c =dE&t is the rate of displacement of the surface 
e&.2) = COflSL with respect to variable $3, i.e. it is the characteristic velocity. We see 
that the quantities ‘duj/dO are represented by the eigenvector of the matrix // d%),l(&%j,i) 
and a=@@ are the eigenvalues of this matrix. Every eigenvalue corresponds to two ident- 
ical waves propagating into the opposite sides of the ;, axis. 

We shall consider simple waves in the domain of small Eij. In /l/ the author investi- 
gated in detail the simple waves for a prestressed state and for a particular type of initial 
deformations, namely such deformations that dwJagl -&~/d&, this ensuring the isotropic 
character of the deformations in the planes parallel to the wave front. The function CD in 
this case depends on two variables only, us and fur" + us*. Below we shall consider the de- 
formations of arbitrary form, but small enough, so that their squares will be much smaller 
than unity and therefore neglected. The function @ will be given for convenience, in the 
form of anexpansionin powers of eij. 

* = %J12 + p& + BIlll + yl, + 6113 -f- %g,2 + qIJ, -+- 
511al, f 011’ 

11 i= ekk3 I, = Eik&ik, Is = ef*&hj&ji 
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Let US set aw,iagl = aw,iaE, = 0. Then the smallness of the deformations will imply the smalls- 
ness of wi. The expansion of @ in terms of ui contains all three variables, with different 
coefficients, which are functions of the initial deformations. 
gt, E2 

The directions of the axes 
are chosen so that awlI@, + aw,l& = 0. This enables us to assume, within the adopted 

approximation to the initial deformations, that E~~=O. Thus the initial deformation will be 
defined by two compression (tension) components E,~,E~~ 

and by the initial values ui= ui'. 
which remain constant within thewave, 

In a weakly deformed medium defined by the potential (1.31, the coefficients of the 

equations (1.1) have the following form with the accuracy of up to the second order infinite- 

simals: 

awau,at4 1 fll = f + flu, + h (3R2 + 49 + f2.Q2 
a*wau,au, = fi, = g + g,u, + h (~1~ + 3~') + a+* 

(1.4) 

aQDfau,au, Z. fa3 = d + dlu, 3 d, (~1' + uz2) + d,u,' 

a2udaUlaU 3 z f13 = fluI, aw/au,au, = fz3 = glut 
azcb/aulau, z flz = 2hu,u, 

d=h+2p+O(&), f=p+o(E). g=P+O(E) 

d, = 6a + 0 (E), fl = 2% + 0 (E), gl = 2b + 0 (E) 
a = h/2 + fL+ p -I- y + 6, 2b=h + 2~+ B +%Y 

h = h/2 + p + p + '/zY + E 

Here 0 (E) represent terms of the order of initial deformation components ell and 

shall see later that the coefficients dz,d3,f2 
sZ2. We 

and g, do not appear in the solution of the 
problem. The following cubic equation is used to determine the eigenvalues a 

det I( fij - diij 11 = 0 (1.5) 

In the case of a stress-free state (all sfj= 0) the above equation yields three known roots: 

a1,2 = P for the two transvers waves and aa=h+2p for the longitudinal wave. For a weakly 
deformed initial state (small ui and sur a& the roots of (1.5) can be obtained approxi- 

mately by computing a small correction to the values given above. The first (principal) term 

of this correction will suffice here. 

2. Quasilongitudinal wave. Computing the first root of (1.5) we obtain 

% = P&3' = A i- 2~ + (h + 28 + 66) (~11 + E& i- 6 au3 

This shows that the characteristic velocity depends on the deformation of the medium. Since 

in the nontrivial solution du, #O, i.e. uQ varies within the wave, it follows that ~a#: const 

and the wave will show the tendency to break. For the materials where a >O, the rarefaction 

waves, in which u1 is increasing,will break, and for the materials with a <O the compres- 

sion waves break. 

The eigenvector corresponding to a 3 is found from the system (1.2) using (1.41, and has 

the form 

liu 
--L= 

2buk 

du, ~+~++23a--b)~, ’ 
k=1,2 

Integrating this gives 

2 (3~ - b) (~3 - us”) 

h+P 

If the initial deformation is absent, the wave will be purely longitudinal. If on the other 

hand ~"#O,then a small transverse component will appear proportional to the small initial 

shear deformation and to the change in the longitudinal componet Q. Such a wave can be 

called quasilongitudinal. 

3. Quasitransverse waves. In the course of computing the approximate values of the 

other two roots of (1.5) we found that the dependence of the characteristic velocitiesonthe 

actual state of the medium manifests itself in the terms beginning with ui'. The third equa- 
tion of the system (1.2) and the coefficients (1.4) together yield a relation connecting the 

longitudinal and transverse components of the deformation, in the wave which is almost trans- 

verse, using the first approximation for the characteristic velocity, i.e. assuming that a = 
I". When the terms of second order of smallness are retained, we obtain, after integrating, 

uI .= uao - b (ul* + uz2)/(h + CL) (3.1) 
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This shows that the variation in the longitudinal COmpOnent is SnEilbX t.b.Sl that Of the trans- 

verSe component by one order of magnitude. We shall call such wave quasitransverse. 

me characterist$.c velocities of these waves are obtained from the first and second equa- 
tions of (1.2) using (1.4) and the expression (3.1) for l&Q. The formulas for the character- 

istic velocities of these waves have the form 

aI,% =p& = (aI0 + az")/2 - x Cule + tAz2 + (3.2) 

L/zl(u*z - u1* --G)% + 4Ul%Q]"~) 

aiy = u + 2bZ10 - (2lL _c Y,$ &ii, i = 1, 2 

x = or, -I- (P f fi -I- S/,y)2/(h + IL) -25, G = @%" -%% 

Here aio and a%" denote the values of a for the waves propagating along a medium in a state 
in which u, E st, = 0. The values depend on the initial deformations of the medium B,,,E~~, &330 
which remains unchanged within the wave , and they differ from each other, albeit by a small 
amount. The formulas for ciz, i = 1,2,3 in a prestressed medium are also given in /2/. 

Using appropriate numbering for the coordinate axes, we can al.ways make aio -s~">O.Tben 
the sign of G and of the coefficient x specified by the elastic properties of the medium, 
will be the same. We have already said, and now it becomes apparent from the formulas (3.2) 
that the dependence of the characteristic velocities cr and ~2 and Ui manifests itself only 

in the quadratic terms. The upper sign in the formulas (3.2) yields, for x >O,thecharacter- 
istic velocity of the wave which can be called a "fast" quasitransverse wave, and the lower 
sign corresponds to the "slow" quasitransverse wave. The relations are reversed for x <O. 
Both waves have a tendency to break, but the fact can be explained, when it happens,onlywhen 
the change in the solution itself is known for each wave. 

4. Integral curves for the quasitransverse simple waves. The differential 

equation forfinding the integral curves depicting a simple wave on the a,,u,-plane is ob- 
tainedfromthe last equations of (1.2), using (1.4) and (3.2) 

From (4.1) we see that wehave two,mutually orthogonal families of integral curves depicting 
two quasitransverse waves propagating with velocities C; and cI respectively. The distribu- 
tion of the *signs in the formulas (3.2) and (4.1) corresponds to each other. The curves 
(4.1) have two singularities with coordinates u1 = 0, us = -&fE for the materials with 

x> 0 (G > O), and coordinates a1 = rt f- G.a, = 0 for the media with x (0 fG (0). In the 
left-handpartoftheabove figure forthematerialwith%>O the solid lines depict the curves 
belonging to the first family corresponding to the upper sign in (4.1) and (3.21 (fast waves). 
The lines of the second family (slow waves) are depicted by the dashed lines. On moving away 
from the singularities when ui>)~G,the curves of the first family tend to circles ,andthose 
of the second family to rays. Similarly, in the right-hand part of the figure the integral 
curves are depicted for a material with x (0. The solid lines correspond to the fast waves, 
and the dashed lines to the slow waves. Botistterns of the integral curves and symmetrical 
about the a,,~~ axes. The condition Ui>f]G 1 means that the initial deformation is such 
that the difference sti -& is small compared with u,z. In the limit when sit --azJ -0, all 
integral curves become circles and rays , and the case is described in /l/. We see that the 
integral curves for the media with x>Oand can be obtained from each 
rotating the axes by a$?.. 

X<Q other by 

5. Breaking of the quasitransverse simple waves. in order to find out which 
waves show the tendency to break, we compute the derivatives fo the characteristic velocities 
along their integral curves. Along the curve represented by the equation 
characteristic velocities are written in the form 

z+ = uE (ul) the 
ci = ci fu,, 

this line can be found as follows: 
no (~1)). The derivatives along 
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A = I(+” - u12 - G)l + ~u,~u~~I’/‘, i = 2, 2 

When x>o, the fast waves in which 1 uI [increases and the slow waves in which ~~~~ 1 decreases 
may both break. When x<o, both fast and slow waves in which / lLll increases show the tend- 

ency to break. In the figure the arrows indicate the directions of the parameter changes 
which correspond to the nonbreaking simple waves. 

The results given here can be obtained by a different method, using the arguments of />I 
and considering very low intensity shock waves. A simple wave can be regarded as a set of 
infinitely weak shock waves, each of which propagates through a medium deformed by the pas- 

sage of the previous shock waves. The integral curves can be then constructed for simple 

waves from the segments of the initial directions of the shock adiabates for each state. We 

can see that the direction of increasing entropy on the segments of the shock adiabate co- 

incides with the directions of the increasing characteristic velocities along the integral 

curves of the simple waves. When En - E** = 0 (C = 0) , a part of the shock adiabate /3/ becomes 

a circle coinciding with the circle of constant entropy. In this case a nonbreaking simple 

wave and a discontinuity propagating with a constant velocity a = (IX," $- a,C)/2 - I/* x (ulZ ;- U??) f 

2bu,’ can both exist without changing the form. 
It should be noted that since theexpansionin small deformations of the initial state 

was continued as in /3/ only up to the linear terms (in the present paper to the overall 

second power), the coefficients of the adiabate differ slightly from those of the expressions 

for the velocity. They will coincide when the term 2kh&bz is added totbe formula (5.1) of 

/3/, and this does not alter the qualitative results of /3/. 

The author thanks A.G. Kulikovskii for discussion of results. 
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